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Abstract

This paper addresses a micromechanics based strength theory to estimate the ultimate strength of unidirectionally
fiber reinforced composites. The fibers used can be transversely isotropic in an elastic region but become isotropically
hardening in a plastic one. The matrix material is considered as isotropically elastic—plastic. The stress state generated in
each constituent material is explicitly expressed as a function of overall applied loads by making use of a bridging
matrix that correlates the stress state in the fibers with that in the matrix. In this way, the composite strength is treated
in terms of those of the constituent materials. Whenever one of the constituent materials attains its failure stress state,
the corresponding overall applied stress is defined as the ultimate strength of the composite. This is because in most
cases either the fiber fracture or the matrix breaking is the source that initiates the composite failure. The well-developed
maximum normal stress theory of isotropic materials is applied to govern the constituent failure. One of the best
advantages of the present theory is that the composite strength can be well estimated using minimum number of input
data, which are the constituent properties and the fiber volume fraction only. Another advantage is that the failure
mode and the stress level in each constituent material are automatically indicated when the composite fails. Such in-
formation is important for composite design. The present theory has been used to predict the off-axial strengths or
strength envelop of a number of unidirectional composites. Good correlation between the predicted strengths and
available experimental data has been found. Application to laminate strength analysis has been shown. The simulated
strength envelope of an angle-plied laminate using original constituent properties agrees well with experimental data.
Comparison of this strength theory with another well-known phenomenological theory, the Tsai-Wu theory, shows
that the present theory is grossly much more accurate for the considered laminate, which indicates that understanding
of the matrix inelastic deformation is critical for laminate strength analysis. © 2001 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

Strength is an important mechanical property that must be taken into account in composite designs.
Various formalisms have been used to predict the failure behavior of continuous fiber reinforced com-
posites. Several comprehensive surveys on the available composite strength theories exist in the literature
(see e.g. Tsai and Wu, 1972; Rowlands, 1985; Nahas, 1986; Labossiere and Neal, 1987; Echaabi et al.,
1996). Recently, Hinton and Soden (1998) and Soden et al. (1998a), sponsored by the UK Engineering and
Physical Science Research Council, organized a “failure exercise” to compare predictive capabilities of a
number of the most important strength theories in current usage. It has been recognized that most of these
theories are developed phenomenologically, treating the composites as homogeneous and anisotropic
materials. In general, extensive experiments including, possibly, biaxial tests, which may be difficult or
expensive to conduct in some circumstances, are necessary to determine the strength coefficients involved in
these theories whenever they are applied to any particular composite. Even with the same constituent
materials, different composites having different fiber reinforcements still require repeated tests. Another
drawback with these phenomenological theories is that they usually cannot predict the failure mode of a
composite. Namely, they are unable to indicate which of the constituent phases initiates the failure of the
composite, and to tell the stress level of each constituent when the composite fails. From a designer’s point
of view, the micromechanical failure mechanisms of the composite are important. The quantitative rela-
tionship of the overall failure of the composite with the respective strengths of the constituent materials and
with their composition geometry is important for choosing an existing composite and for designing a new
composite. An accurate micromechanical approach to the failure of the composites can also save cost in
experimentation required by a macromechanical approach.

A number of attempts have been made to micromechanically investigate the strength behavior of the
fiber reinforced composites (see e.g. Skudra, 1985; Beaumont and Schultz, 1990; Curtin, 1993; Pindera
1993; Subramanian et al., 1995; Christensen, 1997; Gundel and Wawner, 1997; Gotsis et al., 1998).
However, significant limitations exist behind their development. For example, in the Chamis’s model
(Gotsis et al., 1998) which is the only micromechanics failure theory to have joined the Soden et al. (1998a)
exercise, the composite longitudinal tensile strength is computed from fiber tensile strength and the fiber
volume fraction. This treatment is correct in the case that the stiffness and strength of the fiber are sig-
nificantly higher than those of the matrix (see Eq. (23a) of this paper), but becomes obviously wrong in a
reverse case. Other limitations include pre-assumed failure/deformation modes (see e.g. Skudra, 1985;
Curtin, 1993; Christensen, 1997; Gundel and Wawner, 1997). Although Aboudi (1988, 1989) was able to
estimate the strength of unidirectional fiber composites based on his method of cells model in a rather
general sense, his model is much complicated for application. In fact, Teply and Reddy (1990) have shown
that the method of cells model can be reformulated and cast in the form of a finite element analysis by
employing the Hellinger—Reissner variational principle. The user-unfriendly feature of this model is thus
clearly seen.

In this paper, a general and easy-to-use micromechanical strength theory is developed to estimate the
ultimate tensile strength of continuous fiber reinforced composites under an arbitrary load condition. The
theory focuses on determining the internal stresses generated in the constituent fiber and matrix materials.
The stress state in each constituent phase is explicitly related to the overall applied stress. In this way, the
composite strength can be treated in terms of those of the constituent materials. The composite failure is
considered to occur as long as any constituent material attains its failure stress state. This is because in most
cases either the fiber fracture or the matrix breaking is the source which initiates the composite failure. The
well-developed maximum normal stress criterion of isotropic materials is used to detect the failure of the
constituent material. However, any other strength criterion for single-phase constituent materials is also
applicable. The ultimate tensile strength of the composite is thus defined as the corresponding overall
applied stress under which the composite fractures. Extensive comparisons have been made between the
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predicted strengths of various unidirectional composites, using the present theory, and the experimental
data. High correlation has been found, which suggests the potential of the present theory for engineering
application. Application of this theory to the ultimate strength analysis of laminated composites has been
shown. The predicted strength envelope of an angle-plied laminate subjected to combined biaxial load
conditions agrees well with available experimental data. The present theory prediction, using original
constituent properties, is also compared with that based on another well-known phenomenological theory,
the Tsai-Wu theory. The present prediction shows obvious superiority for the composite under consid-
eration.

2. Stress states in constituent materials

Let us consider a representative volume element (RVE) of a unidirectional (UD) fiber reinforced
composite, as shown in Fig. 1. Because many materials posses an ability of undergoing significant plastic
deformation before their failure, the constituent plasticity must be taken into account in order that a
general strength theory is developed for the composite. For simplicity, suppose that the fibers used are
transversely isotropic in an elastic region but become isotropic in a plastic one. Typical such fibers include
glass, aramid, carbon, graphite, silicon carbide, and boron fibers, which can be well considered as linearly
elastic until rupture. The matrix, however, is assumed to be isotropically elastic—plastic. In such case, the
resulting unidirectional composite is generally considered as a transversely isotropic material, having three
material principal axes same as those of the fibers. Thus, for the composite and fibers, a rectangular co-
ordinate system (1, 2, 3) is always set up in such a way that the coordinate 1 is along the fiber axis (Fig. 1).

The constitutive equations of a constituent material (fiber or matrix) can be cast, in an incremental form,
as

{dei} = [Syl{do;}, (1)
where {dS,—} = {dSl, d82, d83, d84, d85, d86}T = {dSll, d822, d833, 2d823, 2d813, 2d812}T, {dO’,—} = {dGl, dO'z, d0'3,

doy,dos, das}T = {doy,,do2,do33, doy, doys, dolz}T, and [S;;] is the elastic—plastic compliance matrix of the
material having the form that (see Appendix A).

[S[j]e when 1y < %J‘h
S[' = e 2
) { [Sy]° + [85]° when > oy, (2)

L, 1
To = |:§aijo-iji| ) (3)

Fig. 1. An RVE of a UD composite.
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O'::]« = O','j — %O'kkéij- (4)
In Eqgs. (3) and (4), a summation is applied to the repeated suffixes and o;; are total stresses. In Eq. (2), oy is
the yielding strength of the material under a uniaxial load and 1, is called an octahedral stress. [S;;]° is the

elastic component of the compliance matrix specified by the well known Hooke’s law, i.c.,

57 =[5 5] =

1 V12 i

Ep _1511 _1‘911
»)
[Sil, = B —5 | (5b)

symmetric ELU

L 0 0
[S,]. = + 01, (5¢)
symmetric Gin

where Ej; and E>; are Young’s moduli in longitudinal and transverse directions of the materials, vj, and vy,
the Poisson ratios, and Gy, and G, the shear moduli of the material, respectively. The moduli E5,, vy3, and
Gy; are not all independent but are related by

Ey

Gp=-—>2 .
23 2(1 +V23)

(5d)

For an isotropic material, we have £y = Ey, = E, vi» = v)3 = v, and G = Go3 = G = 0.5E/(1 +v). [S,]°
is the plastic component of the compliance matrix defined as (Appendix A)

/ / / / / / / / / / ] /
01101 0207 03301 2050}, 201;0),  20),09
/ / / / / / / / / /
02,02 03305 2050y 201,05 201,05,
/ / / / / / / /
[S__]p _ 1 03305 20505 201,05 201,075 (6a)
ij B r /) ;o
2Mrtg 465,05, 401,05 401,070
4013013 401,07,
M ] /
symmetric 401,01,
EnEr
My =—121 (6b)
Ey—Er

where Er is the hardening modulus (tangent to the stress—strain curve in plastic region) of the material
under a uniaxial load. It should be noted that the plastic component (6a) can occur only under loading
conditions. As long as there is an unloading, the compliance matrix of the material is simply given by the
elastic component, [S;]°. The total stress is updated through

lo;j] = [oy] + [day]. (7)

In the following, a quantity with suffix (superscript or subscript) f or m will indicate that it belongs to the
fiber or matrix phase. For example, E™ and v™ will denote the Young’s modulus and Poisson’s ratio of the
matrix, whereas £T and o% will represent the hardening modulus and yielding strength of the matrix, re-
spectively. The corresponding quantity without any suffix will refer to the composite.
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Suppose that a bridging matrix, [4,;], correlates the stress increment in the matrix with that in the fiber at
any load level via

{da?"} = [4,}{da}}. (8)
Substituting Eq. (8) into the volume-averaged relations:

{do:} = Vi{da}} + Vu{do]"}, (9a)

{de} = V{del} + Vafdle), (9b)
where V represents volume fraction, and making use of

{de}} = [S}]{da]}, (10a)

{d&} =[S {da}}, (10b)

{dei} = [S;{da;} (10c)
we obtain (with [/] denoting a unit matrix)

{dof} = (K] + Valdy)) ' {do}, (11)

{do?} = () (1] + VaalAy]) "' {do;}, (12)

1] = (AIS}] + ValSPIAG D (VET) + Via[4,)) (13)

It is thus only necessary to specify the bridging matrix, [4;;]. When both the fiber and the matrix undergo
elastic deformation, the overall compliance matrix, given by Eq. (13), takes the form of Egs. (5a)—(5c¢).
Hence, there are only five independent elements involved in the bridging matrix. The general form of [4;;] is
expressed as

ap  app a3 ais ais A
axy a3 dxg dps Ao
[Aij] _ asy  ds4  dszs Az . (14)
Aaq  d4s  d4e
dss  dse
ZEero (2773

Suppose that all the independent elements are arranged on the diagonal. The fifteen non-zero off-
diagonal elements are to be solved by substituting Eq. (14) into Eq. (13) and making the resulting com-
pliance matrix to be symmetric, i.e.,

Sji:Sij7 l',j:172,...,6. (15)

The last element, which is ay4, is determined by using condition of Eq. (5d). Detailed discussions on the
determination of the independent elements of the bridging matrix is omitted. We only give their formulae as
follows:

an = Ew/Ep, (16a)
Ay = A33 — Agq — 05(1 +Em/Ef2), (16b)

Aass = dgg :05(1 —|—Gm/Gf)7 (160)
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where E,, G, Ern, En, and Gy are called effective moduli and are defined as

m m \/_ m
En={E whenw <ot (17a)
ET  when 1§ > %oy,
0.5E™/(1 +v™) when 7' < %o‘\‘;,
ET/3 when ' > 50y,
Ef. when . < gt ,
En = E]fl ? \% \f( (17¢)
T Wwhen 1, > %oy,
E'. when ¢, < 2,
Ep = §2 (f) 3 0% (174d)
Ey  when 1y > S0y,
G,  when 1) < ol
T g f o V2 f (17¢)
/3 when 1 > %0\

Although detailed description is omitted, evidence to confirm the accuracy of formulae (16a)-(16c) is
presented here. As long as the composites exhibit an elastic deformation, all the non-diagonal elements of
Eq. (14) are found, from Eq. (15), to be zero except for a1, and a;3 which are given by

a3 = an = (Sy, = SH)(an —an)/(S); = Sp). (18)

By using Egs. (16a)—(16¢) and (18), the five effective engineering moduli of the composites are determined to
be (to obtain Ey; and vy,, let doy; # 0 and all the other do;; = 0; to derive Ex, let doy # 0 or dos; # 0 and
all the other do;; = 0; etc.)

Ey = VE], + VaE™, (19a)
Vi = va§2 + Vv™, (19b)
(Ve + Vnan)) (Vi + Vinana)
E22 = f m m f ’ (190)
(Ve 4 Vman ) (VeSyy + a2 VnS%) + ViV (S5 — S5 )anz
(G, +G™) + K (G}, — G™)
G, =G" , 19d
"= G o) (G, — 67 0
0.5(1; + Vg
Gy Ut + Vndzo) (19¢)

V(S — 855) + Vman (S — SB)

It is seen that Egs. (19a) and (19b), obtained based on Eq. (16a), are exactly the same as rule of mixture
formulae, which are sufficiently accurate (McCullough, 1990). The Eq. (19d), obtained on by Eq. (16c), is
an exact elastic solution for the in-plane shear modulus (Hyer, 1997). Only the accuracy of formula (16b),
on which Egs. (19¢) and (19¢) are derived, needs to be verified. This can be done by comparing predicted
results of the present model with experiments and with another micromechanical model, the model by
Chamis (1989). Fig. 2 shows comparison of predicted results using present and Chamis’s models with
experiments (Tsai and Hahn, 1980) for the transverse modulus of a glass/epoxy composite. A complete
comparison of predicted various engineering moduli of the present model with measured results (Kriz and
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Fig. 2. Predicted and measured (Tsai and Hahn, 1982) transverse modulus of a glass/epoxy composite (E; = 73.1 GPa, E,,, = 3.45 GPa,
ve = 0.22, and v,, = 0.35).

Stinchcomb, 1979) of a carbon/epoxy composite varied with fiber volume fraction is indicated in Figs. 3-7.
The material properties of the carbon fiber and epoxy matrix were taken from Aboudi (1984). High cor-
relation in all these figures clearly indicates that formula (16b) as well as Eqgs. (16a) and (16c¢) is sufficiently
accurate in the elastic region.

Since the bridging matrix correlates the stresses generated in the two constituent materials of the
composite, it can only depend on the material properties and on the packing geometries of the constituents.
As long as the bridging matrix has been determined through an elastic deformation condition, only the
material parameters involved need to be changed when any constituent material undergoes an inelastic
deformation. This is because the packing geometries (such as the fiber volume fraction, the fiber ar-
rangements in the matrix, and the fiber cross-sectional shape) do not change or only vary by negligibly
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Fig. 3. Predicted and measured (Kriz and Stinchcomb, 1979) longitudinal modulus, E\;, of carbon/epoxy composites (Ef, = 232 GPa,
v, =0.279, Ef, = 15 GPa, v}, = 0.49, G|, = 24 GPa, E™ = 5.35 GPa, and v™ = 0.49).
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Fig. 4. Predicted and measured transverse modulus, E,,, of carbon/epoxy composites.
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Fig. 5. Predicted and measured shear modulus, Gi,, of carbon/epoxy composites.

small amount when the constituent undergoes the inelastic deformation. Therefore, formulae (16a)—(16c)
are also applicable in a plastic region.

3. Strength theory

Egs. (11) and (12) explicitly specify the stress increments generated in the fiber and matrix materials,
respectively, due to the overall stress increment applied on the composite. Using Eq. (7), the total stresses in
the fiber, matrix, and composite phases are all known at every load level. Based on these stresses, a strength
theory for the composite can be developed in terms of those of the constituent materials. The theory
postulates that except for two extreme cases in which the fiber volume fraction is either extremely small or
extremely large, the composite is considered to fail whenever any of its constituent materials, either the fiber
or the matrix, attains its ultimate stress. Here, the ultimate stress of a constituent material is understood to
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Fig. 6. Predicted and measured shear modulus, G;, of carbon/epoxy composites.
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Fig. 7. Predicted and measured Poisson’s ratio, v,3, of carbon/epoxy composites.

be the failure stress state according to some strength criterion that governs the failure of a single-phase
homogeneous material. As we understand, there are essentially three sources, i.e., fiber fracture, matrix
fracture, and fiber/matrix interface debonding, which cause the composite failure. Therefore, the postu-
lation, on which the present theory will be developed, is reasonable as long as there is a perfect bonding
along the interface between the fiber and the matrix. However, the interface debonding can also be ap-
parently incorporated as though the matrix material (which is inferior in stiffness and strength relative to
the fiber material) had a lower ultimate stress. Thus, only two failure modes, i.e., fiber breaking and matrix
fracture, are concerned in the following.

For isotropic (matrix) materials, one of the most successful strength theories is the maximum normal
stress criterion. It says that the material fails as soon as the maximum normal stress, ¢!, generated in the
material reaches its ultimate value, no matter whether the material is under uniaxial or multiaxial state of
stress. Here, ¢' represents algebraically the largest one of the three principal stresses of the material, i.e.
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¢' > 0® > ¢’. Supposing that the general stress state of the material is denoted by (0, 0.y, 0.2, 03z, 01z, Oyy),
the three principal stresses, ¢!, 62, and &3, are the solutions to the following eigenvalue equation:

O-.X.\' axy O-XZ
det| |on o0, o.|—0[l]] =0. (20)

O2x Gzy (P
Hence, the failure criterion can be expressed as
o' = 0y, (21)

where g, is the ultimate tensile strength of the materials obtained from a uniaxial tension. Similarly, the
material compressive failure is attained if

a’ < — Ouc (22)

where o, is the ultimate compressive strength of the material under a uniaxial compression. It should be
noted that no material buckling is involved herein.

On the other hand, there is no such failure criterion similar to Eq. (21), which is powerful and yet simple,
for general single-phase transversely isotropic materials. Up to date, Tsai and Wu (1972) theory is con-
sidered to be one of the best phenomenological failure criteria for anisotropic (and hence transversely
isotropic) materials (Christensen, 1997). However, a number of strength parameters including the ultimate
stresses in longitudinal tension and compression, transverse tension and compression, biaxial and shear
loads must be determined beforehand in order to apply this theory to the material. Most of these exper-
iments are difficult to be carried out for the present fiber due to its small cross-sectional dimension.
However, the small size (diameter) in the cross-sectional area of the fiber compared with its longitudinal
dimension suggests that the fracture of the fiber is mainly caused by excessive load in the longitudinal
direction. Considering that we aim at determining the ultimate tensile and compressive strengths of the
composite, we can still use criteria (21) and (22) to check the failure status of the fiber even if it is trans-
versely isotropic, where o, and o, should be understood to be the tensile and the compressive strengths
along the fiber axial direction. When any of the constituents fail, the corresponding overall load is termed as
the composite ultimate load and the composite strength is determined accordingly.

4. Tensile strength under uniaxial load

In general, explicit forms for the elastic—plastic stress states generated in the fiber and matrix under
arbitrarily applied load condition may be difficult to obtain due to possible coupling between plastic normal
and shear stresses (Eq. (6a)). If, however, the overall applied load is only unidirectional, coupling between
the averaged normal and shear stresses will be negligible, and the explicit stress states in the constituents are
able to be derived. Based on these explicit stresses, a simple formula for calculating the composite strength
is obtainable, as explained below. For simplicity, suppose that the fiber material is linearly elastic until
rupture and the matrix is bilinearly elastic—plastic.

Let us consider a longitudinal tensile load first. The stress balance in the RVE gives

doy, = Vida!| + Vpda™.

Substituting Eq. (16a) into the previous equation, we obtain

day - apdoy

dof, = — 99 and dom = Sudon
Ve + Vman o+ Vaan
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Therefore, the longitudinal tensile strength of the composite due to longitudinal tensile load is simply given

of — (o, —of )a¥ o™ — (o — o™)a¥
Gllll _ mln{ u ( elf pl) 11, u ( e;m pl) 11 }7 (233)
apl pl
where
m f
it =min{(il(,(’}“}, (23b)
el el
Ef
£ _ 1 23
%) KE{1+(1_K)Em7 ( C)
Em
m 23d
T RE, + (L= E (23
Ef
f 11
= 23
apl V}‘E{l =+ (1 _ I/f)E?7 ( e)
oo Er (23f)

LT RED (1 R)ER

Similarly, if the composite is only subjected to a transverse tensile load, its ultimate transverse tensile
strength is derived as

f f f 0 m m m 0
u . oy — (0 — %2)‘722 oy — (o — %2)‘722
0y, = min : ) ) (24a)
( om
p2 p2
where
m f
. oY o
622 = mln{_Y7_fu}v (24b)
o o
e2 e2
f
E5,

- 24
"2 T REL, + 05(1— K)(Em 1 Eb)’ e

0.5(EL, + E™
OC$ _ - ( 22 + ) —, (24d)
ViEy, +0.5(1 — ) (E™ + E3)

S ES,
P2 VEY, +0.5(1 — Vi) (EF + EY)

(24e)

o 0.5(E%, + ET) . (24f)
P2 ViES +0.5(1 — V) (EF + EYy)

It should be pointed that although a transverse load also generates longitudinal stress components in both
fiber and matrix, they are believed to be small compared with their transverse counterparts and have not
been considered in Eq. (24a).
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Further, the composite in-plane shear strength only due to an in-plane shear load (g1;) reads

f f f 0 m m m 0
o% = min { oy — (O‘esf_ %3)612 ’ Oy — (“esm_ %3)612 }, (25a)
% oy
where
o, = min{ —2¥ % (25b)
= \/§O€§§ ,ae3 ’
Gf
£ 12
o, = , 25¢
o =G, 050 - MG T Gly) (25¢)
0.5(G', + G™)
ol = , 25d
8= Yi6h + 0.5(1 - K (G + Gy (@50
£
o 3G (25e)

P 733G, + 0.5(1 — W)(ER + 3Gh,)

0.5(3G%, + ED)
N | - 25f
o3 3G, +0.5(1 — 1) (ER 4 3GE,) -

In Egs. (25a) and (25b), the tensile strengths of the constituents have been used to govern their shear
failure, according to Eq. (21). If the material parameters of the constituents under pure shear are employed,
we obtain the composite shear strength as follows

o — (o, —of )0 ™ — (o — a™)70
at, :min{ u :f p4) ,— ( ij p4) }, (26a)
pd p4
where
m f
0 = min{ 7::1 ,T—f“ }, (26b)
aef& ae3
Gf
f 12
o, = , 26¢
M RGL +0.5(1 - 1K) (G + GL) (26c)
0.5(G™ + Gt
oy = (GF + Gp) . (26d)

G, +0.5(1 — 15)(GR + Gty)

tt is the fiber shear strength, tJ and t™ are the yield and ultimate strengths of the matrix under pure shear
load respectively. GT is the hardening modulus of the matrix under pure shear.

5. Application to laminated composites

One of the most significant applications of the present theory is for analysing progressive failure process
of laminated composites. It has been recognized that failure analysis and strength prediction of laminated
composites has not been well addressed in the current literature (Hinton and Soden, 1998; Soden et al.,
1998a). A main problem involved is that the load shared by each lamina in the laminate depends on the
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instantaneous stiffness matrix of this as well as other laminae, which is not a constant up to the laminate
failure in most cases. Whereas, a UD lamina is statically determinate under a failure test, it becomes always
statically indeterminate in the laminate. Although a number of excellent lamina strength theories, such as
Tsai and Wu (1972) and Hashin and Rotem (1973) theories, have been established, none of them can make
a correct prediction if the load shared by the lamina is not determined accurately. However, the present
theory automatically gives the lamina instantaneous compliance matrix (Eq. (13)), by incorporating the
nonlinear deformation of any constituent material into account.

Suppose that the laminate under study consists of multidirectional laminae, stacking in different ply-
angles. A global coordinate system (x, y, z), is assumed to have its origin on the middle surface of
the laminate, with x and y in the laminate plane and z along the thickness direction. Let the fiber direc-
tion of the kth lamina to have an inclined ply-angle 6; with the global x direction. Casting stress and
strain in an incremental form, the classical laminated plate theory (Gibson 1994) is applicable at any load
level. Thus, only the in-plane stress and strain increments, i.e., {do}° = {do,,da,,,do,}" and {de}’ =
{dsmdsw,stxy} are retained, where G refers to the global coordmate system. The stresses increments
sustained by the kth lamina in the laminate, {do}{, are related with the strain and curvature increments of
the middle surface, i.e., de’_etc. and d«?, etc., through (Gibson, 1994)

{da}y = [(C))J{dely = (IT10), (1S],) (171 ) {de}y, (27)
where
{de}y = {dggr —|—Zk+#d Ky, de)), +Zk+%d K, 2del + (2 —|—zk,1)dlcgy} (28)

and z; and z;_; are the z coordinates of the top and bottom surfaces of the lamina. In Eq. (27), [S]3x; is the
planar compliance matrix of the lamina in its local coordinate system, adapted from Eq. (13), and [T]. is a
coordinate transformation matrix given by
I 5 201,
[T]c = m% m% 2m1m2 y ll =nmp = COSQ, 12 = —m = sin 6. (29)
llml 12}’}12 llm2+12m1

The middle surface strains and curvatures are obtained by considering laminate equilibrium condition,
resulting in the following equations (Gibson, 1994):

1 I 1 11 11 11 de
proll I A - S A
&
prl B o e e U By
dNXy — 16 26 66 16 26 66 Fx) (30)
dam. 11 11 11 111 111 11 dKO ’
“| |t S oo o o ol | oo
o) |2 %2 %% % S|
0
dM,, 6 @6 Y6 Qe Y6 Cosl | 2dx,,
with
N 1 N
I _ G i _ G 2 2 III
0, = E (Cij)k(zk —Zk-1), 0, = B) E (Cij>k(zk —Zi ), O K § ( u) Zk - (3D
k=1 k=1

In Eq. (31), N is the total number of lamina plies, and (Cf]; ) , are the stiffness elements of the kth lamina in

the global system defined in Eq. (27). In Eq. (30), dN,, dN,,, dN,,, dM,,, dM,,, and dM,, are the overall

incremental in-plane forces and moments per unit length exerted on the laminate. Supposing that applied

in-plane total stresses are (ay,, o), a7, ), these forces and moments are defined, respectively, as
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h/2 h/2 h/2

dN,, = / (do)dz,  dN, — / (do®)dz,  dN,, = / (do”,)dz, (32a)
—hj2 —hj2 —hj2
h/2 h/2 12

dM,, = / 0)2d; dM, 0)zdz, My, = / (do®,)zdz, (32b)
—h/2 h/2 —h/2

where h = Zk:l Zk — Zj-1)-

It is evident from Eq. (27) that each lamina ply in the laminate may carry a different load share, and
some ply must have failed first before others. As soon as one ply has failed, the remaining stiffness of the
laminate must be reduced. Various reduction strategies have been proposed in the literature (Soden et al.,
1998a). In this paper, the simplest and a straightforward reduction, i.e., the total reduction, is employed.
Suppose that the kyth lamina has failed. Then, the middle surface strain and curvature increments at the
next load step are still calculated from Eq. (30), but with different instantaneous stiffness elements, which
are redefined by

0} = Z( O G-z O =3>(c) @-2), o= 32( cg) G-z (33)

"#0 k#ko k #ko

6. Results and discussion
6.1. Unidirectional composite

In this sub-section, the strength theory developed above is applied to estimate the ultimate tensile
strengths of five unidirectional fibrous composites under different load combinations. Experimental results
of all these composites are available. Extensive comparisons between the predictions and the experiments
are intended to show the efficiency of the present micromechanics based strength theory. Except for the first
composite for which the constituent materials are both isotropic, the other four composites considered are
made using transversely isotropic fiber and isotropic matrix materials. The last four examples also illustrate
the applicability of criterion (21) to non-isotropic fiber materials.

In the first example, let us consider a unidirectional SiC fiber and titanium (Ti) matrix composite, which
is used in advanced aerospace propulsion systems. Gundel and Wawner (1997) made an experimental and
theoretical investigation for the longitudinal tensile strength of the SiC/Ti (SCS-6/Ti-1100) composites with
varying fiber reinforcements. Recently, Foster et al. (1998) also studied the unidirectional tensile strength of
this composite numerically as well as theoretically. According to Gundel and Wawner’s (1997) report, the
SiC-fiber used is an isotropically elastic material until rupture, having a Young’s modulus of E; = 400 GPa
and a Poisson’s ratio of v; = 0.25. The measured ultimate tensile strength of the extracted fiber specimens,
however, varied from 2520 to 4540 MPa. In the present study, a fiber ultimate strength of ¢! = 3480 MPa,
which was measured using fiber samples extracted from a composite panel whose tensile stress—strain curve
was plotted in Fig. 6 of Gundel and Wawner (1997), is used. In Gundel and Wawner’s measurement, the Ti
matrix exhibited a typical bilinear elastic—plastic behavior (see Fig. 2 of Gundel and Wawner (1997)),
having properties: E™ = 110 GPa, E} = 2.16 GPa, ¢ = 850 MPa, 6" = 1000 MPa, and v = 0.33. Based
on these constituent properties, the unidirectional tensile strengths of the composites versus fiber volume
fractions were easily calculated using Eq. (23a). For example, with J; = 0.15, the calculated composite
tensile strength is 1246.2 MPa, which is in between measured values of 1150 and 1252 MPa (as a com-
parison, the Chamis’s model (Gotsis et al., 1998 would give this strength as 522 MPa, which is much
underestimated). The calculated strengths are plotted in Fig. 8. For comparison, the measured strengths
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Fig. 8. Predicted and measured longitudinal tensile strength of composite versus fiber volume fraction. The material properties used are
E; = 400 GPa, v; = 0.25, ¢f = 3480 MPa, E™ = 110 GPa, E® = 2.16 GPa, ¢ = 850 MPa, ¢™ = 1000 MPa, and v* = 0.33 (Gundel
and Wawner, 1997).
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Fig. 9. Predicted and measured stress—strain curves of a composite with 20 percent fiber reinforcement, having same material properties
as in Fig. 8.

taken from Table 5 of Gundel and Wawner (1997) are also given in the figure. Excellent correlation is seen
to exist. In addition, predictions of the entire tensile stress—strain curves of two composites having 20% and
35% fiber reinforcements have also been made. These curves, together with the measured results taken from
Gundel and Wawner (1997), are shown in Figs. 9 and 10, respectively. Good agreements between the
predicted and measured curves have been found. In predicting the stress—strain curves, criterion (21) has
been used to terminate a further calculation of the overall strain (using Eq. (10c)).

For the remaining composites, all the constituent material properties (elastic properties) are taken from
Aboudi (1988, 1989). Let us consider the second example. It is a unidirectionally graphite fiber reinforced
polyimide matrix composite, for which experiments were made by Pindera and Herakovich (1981). The
material parameters used are (Aboudi, 1988): Ef, =222 GPa, vi, =0.33, E}, =29.5 GPa, v}, = 0.73,
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Fig. 10. Predicted and measured stress—strain curves of a composite with 35% fiber reinforcement, having same material properties as in
Fig. 8.

Gﬁz =24.1 GPa, E™ = 3.1 GPa, and v™ = 0.39, with a fiber volume fraction of ¥; = 0.61. In contrast to the
first example, there are no available experimental data for the plastic and ultimate strength parameters of
the graphite fiber and polyimide matrix materials. However, the overall longitudinal and transverse tensile
strengths of the composite, X = 1553.6 MPa and Y = 52 MPa, were given in Pindera and Herakovich
(1981), which can be used to retrieve these parameters.

The retrieving procedure is begun by assuming that the graphite fiber is linearly elastic until rupture. As
the stiffness of the fiber is much higher than that of the matrix, we can imagine that the transverse tensile
strength of the composite is governed by the strength of the matrix. Therefore, Eq. (24a) gives

m

m m m
(2 g — 0 g
0_512: Y u Y:Y% u’ (34)
alﬂ am am
e2 p2 e2

since o, ~ o). From Eq. (34), the matrix strength is determined to be 34.8 MPa. Next, let us use Eq. (23a)
to recover the fiber strength. It is required that

f f f 0 m m m 0

u oy = (o — “pl)“ll oy — (o — o‘pl)("ll

¢’ = min =X.
11 o ) o0

pl pl

At this stage, we cannot assume that o} ~ ofj. However, the longitudinal strength of the composite is
most probably governed by the strength of the fiber. Thus, we can consider X = a¥, ~ o /of , due to
f
oL, RO

ol .1» providing that we can choose the other two parameters of the matrix, £f and ¢¥, such that

oy o"—o¥
X Zu Y > X. (35)
m m
OCel apl
oM=34.8 MPa

It is obvious that many different combinations of EF and 6%, which satisfy inequality (35), exist. Hence,
the recovered fiber strength is of =2524.3 MPa. Since (o7/ O‘S)a‘u“::m vpa < X, the epoxy used cannot be
considered as linearly elastic until rupture. On the other hand, any combination of EF and 6%, which
satisfies Eq. (35), is possible due to no other information available. For illustration, four different groups of
ET and oy were used in the present calculation: the first was EJ' = 380 MPa and ¢ = 20 MPa, the second
E} =380 MPa and oy = 28 MPa, the third EF = 580 MPa and ¢} = 20 MPa, and the fourth E} = 580
MPa and o} = 28 MPa. These plastic parameters were chosen somewhat arbitrarily. However, the pre-
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Fig. 11. (a) Predicted and measured off-axial strength of a unidirectional graphite/polyimide composite. The parameters used are
Ef, =222 GPa, v{, = 0.33, E}, =29.5 GPa, v}; = 0.73, G}, = 24.1 GPa, of = 2530 MPa, E™ = 3.1 GPa, v" = 0.39, ¢™ = 34.5 MPa,
and J; = 0.61 (Pindera and Herakovich, 1981) and (b) maximum normal stresses in the composite, fiber, and matrix versus off-axial
angle (E} = 380 MPa and ¢ = 20 MPa).

dicted off-axial tensile strengths of the composite with these four different groups of plastic parameters were
nearly the same, as indicated in Fig. 11(a), where slight amendments have been made for the ultimate
strengths of the fiber and matrix due to consideration of the matrix plasticity. This is attributed to the fact
that the ultimate strength of the composite is mainly dependent on the ultimate stresses, but less on the yield
stress or hardening modulus, of the constituent materials, especially when the stiffness of the fiber is
considerably higher than that of the matrix (Egs. (23a)—(23f) and (24a)—(24f)). Another fact is that the each
load increment on the UD composite has already been given explicitly. On the other hand, the composite
strain depends on the overall compliance matrix which is dominated by the more ductile material prop-
erties. Hence, the ultimate strain and the entire stress—strain curve of the composite are dependent on the
plastic parameters of the constituents. It is further induced that the laminate strength will depend heavily on
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the constituent plastic deformation, because the load sustained by each lamina in the laminate depends on
the lamina current strains.

For comparison, the experimental data taken from Pindera and Herakovich (1981) are also shown in
Fig. 11(a). Correlation between the predicted results and the experimental data is high. Since the composite
tensile strength is estimated from the ultimate stress of either the fiber or the matrix, the failure mode is
automatically indicated. Fig. 11(b) shows the maximum normal stresses in the composite, fiber, and the
matrix varied with off-axial angles, when the composite attains the corresponding tensile strength. The
figure clearly indicates that except for a small neighborhood of angle =0°, the composite failure (tensile
strength) in any other direction is caused by the matrix fracture. The figure also indicates that the ultimate
tensile strength of the composite in any direction is always higher than that of the matrix due to fiber
reinforcement. It is noted that the tensile strength of the neat (unreinforced) polyimide matrix material is
originally reported to be 37 MPa (Pindera and Herakovich, 1981), which is in close to 34.5 MPa, recovered
from the overall transverse strength of the composite. This can be considered as a further confirmation of
the accuracy of the present strength theory.

The next two composites considered are made from graphite (AS) fiber and epoxy (3501) matrix with a
66% fiber reinforcement, and from Aramid (Kevlar-49) fiber and epoxy matrix having a 0.55 fiber volume
fraction, respectively. The elastic properties of the constituent materials used in these two composites, taken
from Aboudi (1988), are summarized in Tables 1 and 2. No other material parameters except for the off-
axial tensile strengths of the composites are available. As in the second example, the overall longitudinal
and transverse tensile strengths (X and Y) of the composites, which are also listed in Tables 1 and 2, are
used to determine the ultimate strengths of the constituent materials. Again, the matrix materials used in
both the composites must be considered as elastic—plastic. The recovered material parameters are sum-
marized in Tables 1 and 2, respectively. Using the constituent material parameters given in Tables and the
corresponding fiber volume fractions (J; = 0.66 and V; = 0.55), the off-axial tensile strengths of the two
composites varied with off-axial angles were predicted and are indicated in Figs. 12(a) and 13(a), respec-
tively. The experimentally measured strength data, taken from Kriz and Stinchcomb (1979) for AS/3501
and from Pindera et al. (1986) for Aramid/epoxy composites, are also shown in the figures. Satisfactory
agreements are seen to exist between the theoretical and experimental results. Figs. 12(b) and 13(b) indicate
the corresponding maximum normal stresses generated in the fibers and matrices when the off-axial tensile
stresses of the composites attain their ultimate values. The quantitative behaviors of these two figures are
similar to that of Fig. 11(b).

The last UD composite example considered is also made from graphite fibers and an epoxy matrix. The
constituent materials of the composite have elastic properties (Aboudi, 1989): Ef, = 213.7 GPa, +{, = 0.2,
EY, =13.8 GPa, v}; = 0.25, G}, = 13.8 GPa, E™ = 3.45 GPa, and v™ = (.35, with a fiber volume fraction of
Vt = 0.66. In contrast to the previous examples where only uniaxial loads were applied, the present com-

Table 1
Material parameters of AS graphite fibers and 3501 epoxy matrix UD composite (X = 1500 MPa, ¥ = 51.7 MPa and ¥} = 0.66)
E11 (GPa) E22 (GPB.) Vi2 Va3 Glz (GPB.) ET (MPa) oy (MPa) Oy (MPa)
Graphite 213.7 13.8 0.2 0.25 13.8 2260
Epoxy 3.45 3.45 0.35 0.35 1.3 380 20 35
Table 2
Material parameters of Aramid fibers and an epoxy matrix UD composite (X = 1141 MPa, ¥ = 27.3 MPa and }; = 0.55)
E[] (GPa) Ezz (GPa) V12 Va3 GIZ (GPa) ET (MPa) oy (MPa) Oy (MPa)
Aramid 124.1 4.1 0.35 0.35 2.9 2060

Epoxy 3.45 3.45 0.35 0.35 1.3 280 16 24
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Fig. 12. (a) Predicted and measured off-axial strength of a unidirectional graphite/epoxy composite. The parameters used are
E', =213.7 GPa, v}, = 0.2, E, = 13.8 GPa, v}, = 0.25, G!, = 13.8 GPa, o' = 2260 MPa, E™ = 3.45 GPa, v" = 0.35, E = 380 MPa,
oy =20 MPa, 67 = 35 MPa, and J; = 0.66 (Kriz and Stinchcomb, 1979) and (b) maximum normal stresses in the composite, fiber, and
matrix versus off-axial angle.

posite is under combined transverse tensile and axial shear loads (i.e., 07> and o1,). The failure envelope of
this composite versus different combinations of ¢y, and a1, was experimentally measured by Awerbuch and
Hahn (1981). The transverse tensile and in-plane shear strengths of the composite were (Awerbuch and
Hahn, 1981): ¥ = 60 MPa (when ¢, = 0) and S = 86.35 MPa (when g5, = 0), respectively. Based on these
data, we can calculate back the ultimate strengths of the constituent materials. From the previous examples
(examples 2 and 3), it can be expected that these stress levels may hardly cause the failure of the graphite
fibers (as the stiffness and strength of the graphite fibers are much higher than those of the epoxy matrix, the
fiber fracture would be mainly caused by excessive load in the longitudinal direction). Hence, the composite
failures should be resulted from the matrix fracture. Using the given transverse tensile strength, ¥ = 60
MPa, the recovered matrix strength is 43 MPa, no matter whether the matrix is assumed to be linearly
elastic or elastic—plastic. With this matrix strength, the predicted failure envelope of the composite is shown



4166 Z.-m. Huang | International Journal of Solids and Structures 38 (2001) 4147-4172

1200 7
A

_1100
©
%1000 — Predicted curve
= 000 A Measured data
=
2 800
5 700
(7]
@ 600
@ 500 1
g 500
= 400 1
©
3¢ 300 1
8
= 200
2

100 -

A A "
0 T T T T T T T T T . . . . . = . . ]

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
Off-Axial Angle (degree)

290 1 q
—O—p .

=261 \\ Fiber material
o ~ 0= Matrix material
=232 1 \
‘; \ —*— Composite
o 203
£
0174
©
£ 145
i
S
g 87 1
£
% 581
©
= 59 |

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
Off-Axial Angle (degree)

Fig. 13. (a) Predicted and measured off-axial strength of a unidirectional Aramid/epoxy composite. The parameters used are
E', =124.1 GPa, v}, = 0.35, E}, = 4.1 GPa, v}, = 0.35, G|, = 2.9 GPa, of = 2060 MPa, E™ = 3.45 GPa, v™ = 0.35, E™ = 280 MPa,
ay = 16 MPa, ¢ = 24 MPa, and V; = 0.55 (Pindera et al., 1986) and (b) maximum normal stresses in the composite, fiber, and matrix
versus off-axial angle.

in Fig. 14(a) by the broken-line. It can be seen from the figure that except for g;, = 0, the predicted strength
of the composite under every other combination of g5, and g, is lower than a measured datum. Therefore,
the graphite fibers cannot fail first before the matrix fractures under all the considered load combinations.
More evidence can be gained from the resulting maximum normal stresses in the fiber and matrix, which are
plotted in Fig. 14(b). These stresses are generated when the composite is loaded to the failure envelope,
which is controlled by the matrix strength of 43 MPa, and are plotted versus the in situ transverse tensile
stress. On the other hand, the recovered ultimate strength of the matrix is 54.5 MPa if the overall shear
strength of the composite, S = 86.35 MPa, is used. Based on this matrix strength, the predicted failure
envelope, as shown by the solid line in Fig. 14(a), agrees even better with the measured data for all the
considered load combinations except for g, = 0. It seems that the predicted curve based on o7 = 54.5 MPa
should be more realistic. The corresponding maximum normal stresses generated in the fiber and matrix
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Fig. 14. (a) Predicted and measured failure envelope of a unidirectional graphite/epoxy composite. The parameters used are Ef, = 213.7
GPa, vi, = 0.2, Ef, = 13.8 GPa, v}, = 0.25, G|, = 13.8 GPa, E™ = 3.45 GPa, v™ = 0.35, and ¥; = 0.66 (Awerbuch and Hahn, 1981),
(b) maximum normal stresses in fiber and matrix when the composite is loaded to failure envelope (predicted using %' = 43 MPa) and
(c) maximum normal stresses in fiber and matrix when the composite is loaded to failure envelope (predicted using ¢7' = 54.5 MPa).
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phases are indicated in Fig. 14(c), which has similar legend meaning as Fig. 14(b). From Fig. 14(c), we can
see that the maximum normal stress generated in the fiber under every combined transverse tensile and in-
plane shear loads is below 110 MPa, much lower than an expected graphite fiber strength. Hence, all the
failures of the composite must be resulted from the matrix fracture, as indicated by the dot-and-dash line in
Fig. 14(c).

6.2. Laminated composite

Soden et al. (1993) measured the final failure envelope of a composite shell made from E-glass/epoxy
[£55°)s angle-plied laminate subjected to bi-axial tensions, i.e., tensile loads in axial (x-) and circumferential
(y-) directions. Different bi-axial tensions were achieved through adjusting internal pressure and axial load.
The E-glass fiber reinforcement was Silenka 051L, 1200 tex, and the epoxy resin system was Ciba—Geigy
MY750/HY917/DY063. Properties of these constituent materials have been reported in Soden et al.
(1998b). They are Er = 74 GPa, vy = 0.22, ¢!, = 2150 MPa, o} . = 1450 MPa, E™ = 3.35 GPa, v = 0.35,
oy = 80 MPa, o, = 120 MPa, and & = 5%, where ¢ is the ultimate strain of the matrix. Therefore, the
matrix used must have displayed an inelastic deformation before failure. On the other hand, no information
was given for the matrix plastic parameters in Soden et al. (1998b). In the present analysis, a bilinear
elastic—plastic behavior is assumed for the matrix. Taking a typical yield strength of ¢§ = 50 MPa, the
matrix hardening modulus is found to be EF = 850 MPa. Using these independent parameters, the pre-
dicted failure envelope of the laminate is plotted in Fig. 15. The experimental data by Soden et al. (1993) are
also shown in the figure. It is seen that correlation between the predictions and the experiments is fairly
good.

To understand better the efficiency of the present theory especially the role of material nonlinearity in the
laminate strength analysis, prediction for the failure envelope of the laminate using another popular theory,
the Tsai and Wu (1972) theory, has also been made, and are plotted in Fig. 15 for comparison. The uni-
directional lamina strengths, which were used to determine the strength parameters involved in the Tsai—
Whu theory, had been taken from Soden et al. (1998b). They are, respectively, the longitudinal tensile and
compressive strengths X = 1280 MPa and X’ = 800 MPa, the transverse tensile and compressive strengths
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Fig. 15. Predicted and measured failure envelopes of a +55° helical glass/epoxy shell subjected to combined axial and circumferential
tensile loads. The parameters used are £ = 74 GPa, vy = 0.22, a{l = 2150 MPa, crfl_c = 1450 MPa, E™ = 3.35 GPa, v" = 0.35, 6} = 50
MPa, E} =850 MPa, ¢} =80 MPa, a7}, = 120 MPa, )t = 0.602, E;; = 45.6 GPa, E; = 16.2 GPa, vj; = 0.278, G, = 5.83 GPa,
X = 1280 MPa, X’ =800 MPa, Y =40 MPa, Y’ = 145 MPa, and S = 73 MPa (Soden et al., 1993, 1998b).
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Y =40 MPa and Y’ = 145 MPa, and in-plane shear strength S = 73 MPa. In the prediction by using the
Tsai-Wu theory, the lamina in-plane elastic properties, E;; = 45.6 GPa, Eyp = 16.2 GPa, v;; = 0.278,
G, = 5.83 GPa, were also taken from Soden et al. (1998b), and, as usual, no matrix plasticity was assumed.
It can be seen that the predicted failure envelope based on the present theory agree grossly much better with
the experiments than that based on the Tsai—-Wu theory. More applications as to all those ““failure exercise”
problems (Soden et al., 1998a) are reported elsewhere (Huang, 2000).

7. Conclusion

A powerful and user-friendly micromechanics based strength theory is described in this paper to predict
the ultimate strength of transversely isotropic fiber reinforced isotropic matrix composites under any load
condition. The biggest difference of the present theory, relative to those existing micromechnics models, is
that the constituent nonlinear deformation has been taken into account reasonably. This nonlinearity is
important for laminate failure analysis and strength prediction. The theory is developed based on a perfect
bonding assumption for the fiber/matrix interface. There is no other limitation on the fiber and matrix
materials used, except that the constitutive relationships of these materials can be described by Hooke’s law,
in their elastic region, and by the Prandtl-Reuss theory, in the plastic one, respectively. Extensive com-
parisons have been made between the predicted strengths of this theory and the available measured data.
Good agreements exist in all the cases. In contrast to a macromechanical (phenomenological) strength
theory, the present theory can clearly indicate the failure mode of the composites and the stress level in each
constituent material when the composites fail. This makes it possible to optimize a composite strength by
choosing proper constituent materials as well as fiber reinforcement/laminate lay-ups. Another advantage
of the present theory is that it only uses a minimum number of experimental data from the constituents and
no repeated test is required. Further improvement of the present theory could be made by discounting
explicitly those geometric/fabrication defects such as damage evolution, fiber/matrix debonding, constituent
buckling, etc. in the bridging matrix. Another improvement might also be possible by using different
strength criterion to detect the constituent failure. For example, it is known that the maximum normal
stress criterion is not very accurate in some load conditions such as pure shear, equi-multiaxial tensions, etc.
Incorporation of the present micromechanics theory with a phenomenological failure criterion such as
Tsai-Wu theory for laminate strength prediction is also possible.

Appendix A

In order to tailor the elastic—plastic behavior of a constituent material, a plastic flow theory must be
applied. In this paper, we choose to use the general Prandtl-Reuss theory (Adams, 1974) to describe the
isotropic hardening of the material. Using an incremental form, this flow theory postulates that the plastic
incremental strain is proportional to the deviatoric stress, i.e.,

dell) = did, (A.1)

i

OJ~ = (f[j — %O—kkéiﬁ (AZ)

ij

where dsfjp) denote the strain increments in a plastic region, d1 is a positive parameter. The parameter d/
can be defined simply by multiplying Eq. (A.1) by itself. This gives

di= |defPdel? v /(a4) " (A.3)

The total strain increments can be separated into
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de; = de + del’, (A.4)
where the elastic components are related to the stress increments through Hooke’s law, i.e.,

{de} = [8y)"{do}. (A5)
Defining the octahedral plastic shear strain increment as

1/2

delP = {%def}”)ds,(f)} : (A.6)

and the octahedral shear stress as
N

To = |:§O-ijo-[j:| ) (A7)
Eq. (A.3) becomes

di = del? /. (A.8)

Substituting the last equation into Eq. (A.1), we have

dg(P) )
4o = <_> (A9)

To

In order to establish a relationship between dsép) and 7o, let us apply Eq. (A.9) to a uniaxial tensile test in
which

02 =033 =01p =013 =023 =0, g11 7&07 (A~10)

dell) = delf) =dely =0,  delf) =delf) = —1del?,  del) #£0, (A.11)
where the plastic incompressibility has been employed. Substituting Egs. (A.11) into Eq. (A.6) gives

del? = v2delP, (A.12)
while substituting Eq. (A.10) into Eq. (A.2) and then into Eq. (A.7) reads

Tozgml- (A.13)

Suppose that the tensile stress—strain curve of the material is composed of piecewise linear segments. Due
to the well-known property in unloading process, the relationship between the plastic shear strain increment
and the tensile stress increment can be denoted by

e 1 /1 1
d8<P>:4:_(___>da.
0 V2 V2 \Er En
Since Er = dg/de;;, we get

2M
dry = TTdegp>. (A.14)

On the other hand, differentiating Eq. (A.7) gives

/
O'l-j

d‘EO =

do’..
3tg Y

Substituting Eq. (A.14) into the last equation, we obtain
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/

de® = _ %4 (A.15)
O T 2Myty Y

From Egs. (A.15) and (A.9), we derive

/ /
® _ ondoy

de =
YoMyt Y

(A.16)

If we make use of the assumption that no plastic work can be done by the hydrostatic component of applied
stress field, 1.e.

/ A ) / 1 —
Gide'l.j = a..(da dakkéij> = al.jda,-j.

ij ij 3

Eq. (A.16) can be rewritten as

or, in the contracted form,
{de”’} = [5,]"{da;}. (A.17)

where [S; -](p ) is given by Eq. (6a). Substituting Egs. (A.5) and (A.17) into Eq. (A.4), we see that the in-
stantaneous compliance matrix has the form of Eq. (2).
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